Signal Boosters

A Signal Booster is designed for hardwired applications whereas a repeater is designed to provide wireless coverage to a specified area. Signal Boosters are typically used in M2M applications while repeaters are used in Distributed Antenna Systems to provide wireless coverage to a specified area.

JDTECK’s Signal Boosters and Repeaters supports all technologies or protocols in the frequency band the device is compatible with. These include LTE, GSM, DCS, CDMA, PCS, AWS, WCDMA, CDMA2000,UMTS, HSDPA, HSUPA, EV-DO, EDGE, and GPRS to list some.

A Line Amp is designed to be installed downstream of a repeater in a DAS (Distributed Antenna System) where signal starts to drop off towards the extremities of the area thus boosting the signal back up to those weak antennas. It has both UL and DL gain, but only DL output power. A signal booster on the other hand is designed to be hardwired to the device it needs to boost or amplify signal to. It is installed between the external antenna and the device boosting both UL and DL gain.

It is important to note that line amps should not be liberally incorporated into a DAS at the design stage but should only be added if the link budget did not quiet produce the desired results after deployment, or a particular area in the DAS needs a small boost in power and a higher powered repeater or additional repeaters would be too costly to achieve this. It is always best to spec an appropriate sized repeater for the area you need to cover from inception.

Antennas

Gain is defined as the compressing of the vertical component of the antenna pattern, in effect causing the radiation pattern of the antenna to reach out further toward the horizon. It is not the creation of power, but rather a simple refocusing of energy from all directions to a specific direction. Gain is measured in decibels (dB). Vertical antennas are in fact quite directional, except in the horizontal or azimuth plane.

0-dB gain antennas radiate more energy higher in the vertical plane to reach radio communication sites that are located in higher places. Therefore, they are more useful in mountainous and metropolitan areas with tall buildings. A 2dB or 3dB gain antenna is the compromise in suburban and general settings. A 5dB gain antenna radiates more energy toward the horizon (compared to the 0, 2, and 3dB antennas) to reach radio communication sites that are further apart and less obstructed. Therefore, they are best used in flatlands and open areas.

This simply means that if the antenna is vertical, the signal will be transmitted equally in all directions along the horizon.

It depends on your environmental conditions. Clearing any immediate obstructions within 40-50ft of the path of the antenna would be best. These include any walls, building roof line or trees blocking a clear Line of Sight (LOS) to the cell tower. The antenna should also be at least 3-4ft above the obstruction to avoid any reflections that may occur with will affect performance.

Cellular Repeaters

The acronym DAS means Distributed Antenna System. It comprises of several components mated together to create a network that distributes signals across a specified area. There is a misconception by many that DAS refers specifically to an active fiber solution, however this is logically incorrect. The word distribution in the acronym DAS would mean any system with more than 1 distribution point. Therefore a system with just 2 service antennas is accurately called a DAS (A Mini-DAS) because you have 'distributed' the signal to more than 1 point. 

There are two main types of signal distribution systems which are passive and active. A passive DAS solution in the true sense is not entirely passive but does has an active component at the heart of it called a repeater. The repeater is designed to receive a signal from a source point, be it OTA (Over The Air), via a Node / base station or Small Cell. The repeater then filters, amplifies and sends the boosted signal via a coaxial cable out to an engineered wiring grid that consists of coaxial cable, connectors, directional couplers, signal splitters and multiple antennas. The service antenna is the last tangible component of the DAS before the signal then "jumps" or moves from that transmission surface wirelessly out to open space.  In a typical active DAS configuration the source signal can also be received the same way, via OTA, node or small cell. The signal then goes to a repeater or some sort or BDA which then connects to what is called a Master Unit. Instead of a coaxial connection to the distribution grid as in the passive configuration, the Master Unit converts the RF signal over to light / optical which then transmits the signal through fiber optic cable out to a distribution hub which then further extends this signal out to Remote Units. These remote units then covert the light signal back to RF which then connects to a wiring grid of components just like the passive system mentioned before. (coax, splitters, couplers, antennas)

One of the main purposes for using an active DAS is to be able to transmit a signal across a very large area using many service antennas with reduced signal loss and quality, that's because a portion of the transmission was sent over fiber optic cable. Another type of DAS is called an "O-DAS" this simply means an Outdoor - Distributed Antenna System. Again, this can be either passive or active in nature. To recap, DAS simply means Distributed Antenna System. There are passive DAS solutions and active DAS solutions. A repeater is just one component of a DAS and not some sort of different solution from a DAS but is one component of a DAS.

Not at all. There are 4 main components to the system: (1) Outdoor or Donor Antenna, (2) Coaxial Cable, (3) Indoor Repeater or Head-end Unit, and (4) Indoor Service Antenna. You simply need to mount the outdoor antenna on a pole or antenna bracket in an appropriate location, run your length of coax to the base unit, install the base unit on a wall inside the area you want to improve reception to and then connect the indoor service antenna. Most customers get this installation done in an afternoon with some help.

Networks

Spectrum Analyzers are available for short tern rental from JDTECK. These are typically rented for 1 week and extended as needed. Technical phone support is provided with your rental at no additional cost so any questions about using the analyzer, test setup or results are answered.
Upload Background Image
Drop File

Contact one of our cellular signal enhancement engineers.

CONTACT US

Upload Background Image
Drop File